Rank-width and vertex-minors

نویسنده

  • Sang-il Oum
چکیده

The rank-width is a graph parameter related in terms of fixed functions to cliquewidth but more tractable. Clique-width has nice algorithmic properties, but no good “minor” relation is known analogous to graph minor embedding for tree-width. In this paper, we discuss the vertex-minor relation of graphs and its connection with rank-width. We prove a relationship between vertex-minors of bipartite graphs and minors of binary matroids, and as an application, we prove that bipartite graphs of sufficiently large rank-width contain certain bipartite graphs as vertex-minors. The main theorem of this paper is that for fixed k, there is a finite list of graphs such that a graph G has rank-width at most k if and only if no graph in the list is isomorphic to a vertex-minor of G. Furthermore, we prove that a graph has rank-width at most 1 if and only if it is distance-hereditary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphs of Small Rank-width Are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width

We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...

متن کامل

An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width

We provide a doubly exponential upper bound in p on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F of linear rank-width at most p. As a corollary, we obtain a doubly exponential upper bound in p on the size of forbidden vertex-minors for graphs of linear rank-width at most p. This solves an open question raised by Jeong, Kwon, and Oum [Ex...

متن کامل

Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions

In the companion paper [Linear rank-width of distance-hereditary graphs I. A polynomialtime algorithm, Algorithmica 78(1):342–377, 2017], we presented a characterization of the linear rank-width of distance-hereditary graphs, from which we derived an algorithm to compute it in polynomial time. In this paper, we investigate structural properties of distance-hereditary graphs based on this charac...

متن کامل

Graphs of Bounded Rank-width

We define rank-width of graphs to investigate clique-width. Rank-width is a complexity measure of decomposing a graph in a kind of tree-structure, called a rankdecomposition. We show that graphs have bounded rank-width if and only if they have bounded clique-width. It is unknown how to recognize graphs of clique-width at most k for fixed k > 3 in polynomial time. However, we find an algorithm r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2005